
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 3, MARCH 1997 367

Numerical Analysis of Near-Infrared Wave
Propagation Characteristics in Dielectric-Coated

Parallel Planar Microstructural Waveguides
Wim E. A. Van Petegem, C. Robert James, Fred E. Vermeulen,Member, IEEEand Alexander M. Robinson

Abstract—In this paper, the properties of electromagnetic (EM)
wave propagation in layered planar microstructural waveguides
are investigated. Analytical and numerical results are presented
on the propagation of a 1-�m EM wave in a parallel planar
waveguide. Its walls are made of Au or Si, coated with a thin layer
of SiO2 and separated by a fluid. The propagation characteristics
of even and odd TE and TM modes are described as a function
of the coating thickness. It is shown that the propagation of TE
modes exhibits a sudden shift in power flow distribution from the
fluid to the coating when the coating thickness exceeds a critical
value. This property may be exploited for micromachined sensor
applications. TM modes do not exhibit this behavior.

Index Terms—Coplanar waveguides, microsensor, submillime-
ter wave propagation.

I. INTRODUCTION

T HE PRESENT study examines the propagation properties
in layered planar microstructural waveguides. Such struc-

tures have potential applications for micromachined sensor
systems.

In earlier work [1], the authors have presented analytical
and numerical results on the propagation characteristics of
TE and TM modes in empty parallel-plane microstructural
waveguides made of gold for wavelengths of 1–10m. Similar
studies have been reported by the authors as well as others for
cylindrical waveguides of gold and nickel [2]–[4]. Recently,
changes of mode structures and attenuations in dielectric-
coated circular hollow waveguides have been described in [5].

In this paper, the work in [1] and [5] is now extended to
the analysis of 1-m wave propagation in a symmetric parallel
five-layer planar waveguide. Included in this study is the case
where the metal constituting the conducting wall is gold, as in
previous work [1]. However, silicon as wall material is also
studied, for two reasons: 1) silicon is readily coated with SiO,
since a native layer of SiOnormally exists on its surface;
and 2) silicon has optical characteristics that greatly differ
from those of gold: at 1-m wavelength the refractive index
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Fig. 1. Symmetric five-layer waveguide structure.

of silicon is much higher than that of gold, while its extinction
coefficient is much lower. Both materials will be referred to
as metals. The conducting walls are coated with a thin layer
of SiO (see Fig. 1). The structure is filled with a fluid, such
as water, instead of air, for the purpose of application as a
biosensor.

It is a well-known property of a loss-free asymmetric three-
layer slab waveguide (see Fig. 2) that waves become confined
to the middle region which is surrounded by two media,
infinitely extended in the -direction, when its thickness
reaches a certain value. Such a critical thickness is determined
by the relative refractive indices of the three media and the
wavelength, and is usually called the cutoff thickness for wave
propagation in the structure [6]. In the five-layer waveguide
of interest in this study (Fig. 1) the distance between the
metal plates must be larger than the cutoff value for the used
wavelength to allow wave propagation in the structure. Adding
the coatings does not dramatically change the propagation
characteristics as long as their thicknesses are small. The
wave will propagate mainly in the fluid. However, once the
thicknesses of the coatings exceed a certain value it is to
be expected that the wave will propagate in the coating as
well, with a potentially significant effect on the overall wave
attenuation and phase constant. This thickness of the coatings
is called the cutoff thickness, since it is associated with the
onset of wave propagation in the coating and the significant
reduction of propagation in the fluid [7].
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Fig. 2. Asymmetric three-layer slab waveguide structure.

TABLE I
COMPLEX REFRACTIVE INDICES FORWAVEGUIDE MATERIALS AT � = 1�M

This paper begins with a theoretical analysis of a parallel
planar waveguide with thin coatings. In the analysis, the
characteristic equations for the different modes are derived.
Following this, numerical results are presented for the atten-
uation and phase constant of the lowest order modes, as a
function of the coating layer thickness. These results reveal,
for some modes and materials, a sudden transition in the
propagation path from the fluid to the coating. It is suggested
how this property may be exploited for biosensor applications,
such as an optical immunosensor, where detection is based
on a change in coating thickness due to the binding of
immunocomponents at the waveguide surface.

II. THEORETICAL ANALYSIS

A. Model Description

Consider the five-layer waveguide structure shown in Fig. 1.
This structure is an idealization of a waveguide that consists
of a fluid between two parallel metal plates, each of finite
thickness and coated with a thin layer of SiO. Each layer is
characterized by its magnetic permeability () and its complex
electric permittivity ( ). Subscripts identify the various layers
( fluid, SiO , and metal).

The complex refractive index of a medium is defined by

(1)

where is the refraction index of the medium and its
extinction coefficient. Values for the complex refractive index
at a wavelength of 1m for the materials to be considered
here are summarized in Table I [8], [9]. Note that [9] does
not explicitly mention a value for the extinction coefficient of
Si at 1 m. The value stated in Table I is approximate. It is
inferred from equations in [9] and, in fact, this approximation
does not critically affect the results presented here.

B. Characteristic Equations

The approach taken here to treat electromagnetic (EM) wave
propagation in the guiding structure of Fig. 1 is similar to that
in [1] and [6].

The propagation constantof a wave in the guide is defined
as

(2)

where denotes the attenuation constant andthe phase
constant.

Since the structure of Fig. 1 is uniform along the-axis
and infinite in the -direction, Maxwell’s equations yield the
following propagating modes:

• TE modes, with field components: , ( ), and
( );

• TM modes, with field components: , ( ), and
( ).

The mathematical derivation of the characteristic equations
for both modes is straightforward.

1) TE Modes: Consider the TE modes first.
For notational convenience, the following parameters are

introduced:

(3)

(4)

(5)

where is the radian frequency.
Since the field intensities have to vanish at infinity, the

authors choose the solution (for ):

(6)

assuming that:

(7)

Continuity conditions are then imposed on the tangential
field components and at the two interfaces
and . It can easily be shown that under these
constraints only even or odd solutions are possible for .
Consequently, guided TE modes are divided into even and odd
ones depending on the parity of in the fluid layer. For each
of both classes the characteristic equation can further be found
by assuring the existence of matched EM-field intensities at
the interfaces.

In the case of nonmagnetic materials ( ,
the magnetic permeability of free space), the characteristic
equation for even TE modes is given by

(8)

and for odd TE modes

(9)
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Each solution of (8) and (9) determines the attenuation
and the phase constant of an even mode and an odd mode,
respectively. Numbering the consecutive solutions indicates
the order of the mode.

It must be pointed out that the characteristic equation (8)
and (9) can also be expressed by one equation, as is shown
in [6] and [10].

2) TM Modes: A similar approach can be followed to find
the characteristic equations for even TM modes:

(10)

and for odd TM modes:

(11)

Again, consecutive solutions of these equations yield the
propagation characteristics of all even and odd modes, respec-
tively.

Without the SiO coating on the metal walls of the structure
of Fig. 1, the above characteristic equations for TE and TM
modes can be simplified and are in agreement with the ones
given in [1].

3) Three-Layer Slab Waveguide:A special case emerges
when the distance between the metal plates increases without
limit, but the coating thickness is kept constant ( ,
but ). This situation corresponds to the three-
layer slab waveguide of Fig. 2. The left-hand side (LHS) of
(9) and (10) reduces to

sign Im

(12)

since only exponentially decaying field intensities are physi-
cally acceptable in infinite media. The characteristic equations
now become

(13)

and

(14)

for TE and TM modes, respectively. Note that the distinction
between even and odd modes no longer exists for the structure
of Fig. 2; equations (8) and (9) both reduce to (13), while (10)
and (11) reduce to (14). These equations will be used later to
calculate the coating cutoff thickness, at which propagation
becomes possible in the SiOlayer.

C. Analytical Approximations

1) Propagation Constants:Initial estimates for are re-
quired when numerically solving the determinantal equations.
For the lowest order TE and TM modes in a planar waveguide
without a coating and filled with air, suitable approximations
for are given in [1]. In the present study, propagation char-
acteristics are analyzed as a function of the coating thickness.
For zero thickness, the estimate in [1] applies and can be used
to calculate the exact propagation constant. This result in turn
serves as a starting value which guides the search for further
roots of the characteristic equations as the layer thickness is
incrementally increased.

2) Onset of Transition in Propagation Pathway from Fluid
to Coating: A change in wave-propagation characteristics is
expected as the coating thickness exceeds that value where
cutoff occurs [7], [11]–[12]. Indeed, when the coating thick-
ness is above its cutoff value a major part of the wave will
propagate in the coating and not in the fluid.

The cutoff thickness of the coating, and hence the oc-
currence of the shift in propagation from one medium to
another, can be predicted by a phase-matching condition [7],
[11]–[12]; the phase shift of the propagating wave (expected
to be predominantly in the coating when its thickness is
larger than the cutoff thickness) should be approximately
equal to the wavenumber in the fluid, the medium where the
wave propagates before the cutoff in the coating occurs. In
mathematical terms, this condition is

(15)

when the extinction coefficient of the fluid () is neglected.
At cutoff, the attenuation constant is generally very small
( ), and for simplicity of the calculations, it is ignored
[7]; i.e.,

(16)

Thus, the transition occurs when .
At the transition, the characteristic equations for TE modes

become

(17)

Using the definitions of and and the optical properties
given in Table I, it can be shown that for both wall materials
(Au and Si)

(18)

Using (4), an approximation for the cutoff thickness of the
coating can be obtained as

(19)

From (19) and with the material properties mentioned in Table
I, it follows that when the coating increases to a thickness of
0.42 , the TE wave is no longer confined in the fluid (water),
but starts propagating in the SiOcoating, whatever metal (Au
or Si) is used. Similar behavior does not occur for TM modes.
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This is not unexpected, since lack of a well-defined cutoff is
a characteristic usually associated with a TM mode [11].

III. SIMULATION RESULTS

In order to find the roots of the characteristic equations for
each mode a numerical root solver based on Muller’s method
was implemented in MATLAB [14]. Results are presented here
for the lowest order even and odd TE and TM modes. The
wavelength in the simulations is chosen to be 1m.

A. TE Modes

The propagation constants for the lowest order even and
odd TE modes are calculated from (8) and (9). The results
are presented in Fig. 3, as a function of the coating thickness,
with the metal spacing as a parameter.

The attenuation constant decreases with increasing metal
spacing . This behavior is well-expected [1]. Results for metal
spacings larger than 5 m have been calculated as well, but
are not shown. These results were found to be almost identical
to the ones shown for m, for both the attenuation and
phase constant. Thus, increasing the metal spacing has little
effect on the propagation constant once a value of about 5m
is reached. Larger spacings will allow higher order modes to
propagate, a situation which is generally undesirable for most
applications.

Of significance is the shape of the attenuation constant
curve for m. For the smallest coating thicknesses
(in the range from 0 to 0.3m), the attenuation constant is
only slightly dependent on coating thickness. Increasing the
coating thickness beyond this range causes a sudden increase
of about one order of magnitude in the attenuation constant.
The coating thickness at which this happens is about 0.4m,
the value calculated above for the cutoff thickness. Beyond
this thickness, the TE mode shifts from propagating in the
fluid to propagating in the SiOlayer.

This latter statement is supported by the time-averaged
power-flow distributions shown in Fig. 4. In this figure, the
time-averaged power flow distribution is plotted against the
distance from the center of the waveguide. Symmetric
profiles apply for the other half of the guide. The spacing
between the metal planes is chosen to be 5m, since a sharp
transition in wave propagation from fluid to coating occurs at
this value.

The power flow distribution is calculated by use of the
Poynting vector

(20)

and is normalized to equal 1 per-unit width in the -
direction. For both the even and odd TE modes, it can clearly
be seen that the wave propagates mainly in the fluid when
the thickness of the SiOcoating is less than the cutoff
thickness. However, for a thickness of 0.5m, power flow
has predominantly shifted from the fluid to the coating.

This transition in propagation path may also be demon-
strated by comparing the wave propagation characteristics for
the five-layer structure of Fig. 1 with those for the three-
layer structure of Fig. 2. The propagation characteristics for

(a)

(b)

Fig. 3. (a) Attenuation and (b) phase constant of a wave in a five-layer
waveguide with Au as the metal, SiO2 as the coating, and water as the fluid
plotted as a function of the coating thickness for the lowest order even and
odd TE modes and metal spacings ofb = 2 and 5�m, and compared to the
lowest order TE mode propagation characteristics in a three-layer waveguide
of the same materials; note that the latter completely coincides with the odd
TE mode in the five-layer structure.

the latter are calculated from (13). As can be seen in Fig. 3,
the attenuation and phase constants become identical for both
structures when m, once the SiO layer has been
increased in thickness beyond its cutoff value for the lowest
order TE mode. In fact, increasing the metal spacing in Fig. 1
is essentially equivalent to removing the upper boundary of
the waveguide, to create a structure that resembles the one in
Fig. 2. Hence, very similar wave propagation characteristics
are expected. This can easily be verified in the case of

m, although not for m.
There is also a difference in the attenuation and phase

constants of the even and odd TE modes, when the wave
is propagating in the fluid. Once the SiOlayer has been
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Fig. 4. Time-average power flow distributions normalized to 1W per-unit width in they-direction, in the transverse plane of a five-layer waveguide
with Au as the metal, SiO2 as the coating, and water as the fluid plotted as a function of the distancex from the center of the structure for the lowest
order even and odd TE modes and a metal spacing ofb = 5�m.

increased beyond its cutoff thickness, these differences dis-
appear. This is a further indication of the transition to a
behavior typical of the waveguide structure of Fig. 2. Indeed,
as previously mentioned, no distinction is possible between
even and odd modes for such a slab waveguide.

A comparison between Au and Si as metal is made in Fig. 5
for a metal spacing m. Both metals lead to a similar
variation in wave propagation behavior for the lowest order
TE modes as the coating thickness is varied although these
metals have quite different optical properties. The phase shift
is almost identical in both cases. The attenuation constant,
however, is about an order of magnitude larger for Si than
for Au. The cutoff thickness of the SiOcoating is approx-
imately 0.4 m, for both metals. This is in agreement with
the theoretical analysis; equation (19) indeed shows that the
cutoff thickness is not dependent on the properties of the metal.
Although the attenuation constant is larger for Si than for Au,
wave propagation for the Si exhibits a sharper transition from
propagation in the fluid to propagation in the SiOlayer. This
larger sensitivity (change in attenuation constant with change

in coating thickness) makes Si potentially a more attractive
material for microsensor applications, as discussed later.

B. TM Modes

As already indicated, the TM modes do not show the same
transition in the propagation pathway as the TE modes when
the thickness of the SiOlayer is increased.

The propagation constants of the even and odd lowest order
TM modes are calculated from (11) and (10). The results are
presented in Fig. 6, for a metal spacing m and for both
Au and Si as metal. In the case of Au, the attenuation and phase
constants of the even and odd modes virtually coincide, for all
SiO coating thicknesses considered. The general shape of the
attenuation and the phase constant curves remotely resembles
the shape of the corresponding curves for TE modes in the case
of Au, when this TE mode propagates in the SiOlayer (i.e.,
coating thickness above its cutoff value). This suggests that
the TM modes are never propagated in the fluid, but always
in the SiO layer. Indeed, the power flow distributions shown
in Fig. 7 show this to be the case. It should also be noted that
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(a)

(b)

Fig. 5. (a) Attenuation and (b) phase constant of a wave in a five-layer
waveguide with Au or Si as the metal, SiO2 as the coating, and water as the
fluid plotted as a function of the coating thickness for the lowest order even
and odd TE modes and a metal spacing ofb = 5�m.

the attenuation constant for TM modes is at least one order of
magnitude larger than for TE modes.

When Si is used as a metal, the attenuation constant is higher
than when Au is used (see Fig. 6). Moreover, the attenuation
and phase constant curves become discontinuous at a certain
coating thickness. For this thickness (and larger ones), no
solutions can be found for (10) and (11), for which the field
intensity decays exponentially in the metal. In all previous
cases considered the field intensity in the metal decays very
rapidly in the -direction and hence the five-layer model of
Fig. 1 is adequate for representing a structure having metal
walls of finite thickness. In the present case, however, where
the field intensity in the metal does not decay exponentially,
the model of Fig. 1 is inappropriate for a structure with finite

(a)

(b)

Fig. 6. (a) Attenuation and (b) phase constant of a wave in a five-layer
waveguide with Au or Si as the metal, SiO2 as the coating, and water as
the fluid plotted as a function of the coating thickness for the lowest order
even and odd TM modes and a metal spacing ofb = 5�m; the curves for
Si become discontinuous at a coating thickness for which solutions with a
field intensity that decays exponentially in the Si can no longer be found; the
curves for even and odd TM modes in the case of Au completely coincide
in these plots.

metal boundaries. A more detailed model is required to fully
investigate the propagation characteristics for TM modes (as
described in [10]) when Si is used as a metal.

IV. SENSOR APPLICATIONS OF A PARALLEL

PLANAR WAVEGUIDE COATED WITH A THIN LAYER

A. Sensing Principle

Based on their propagation characteristics, TE modes show
potential for use in sensing applications. TM modes are not
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Fig. 7. Time-average power flow distributions normalized to 1W per-unit width in they-direction, in the transverse plane of a five-layer waveguide
with Au as the metal, SiO2 as the coating, and water as the fluid plotted as a function of the distancex from the center of the structure for the lowest
order even and odd TM modes and a metal spacing ofb = 5�m.

suitable since they do not exhibit the transition in propagation
pathway from fluid to SiO layer. Therefore, the following
discussion is limited to TE modes.

The transition in the propagation pathway is accompanied
by a sudden increase in attenuation, a property that can be
used in sensor applications. A relatively small change in the
SiO layer thickness will lead to a very large change in
attenuation of the propagated wave. This occurs when the
layer thickness increases from below to above the cutoff value.
As shown in Fig. 5, the highest sensitivity occurs for odd
TE modes. Comparing both wall materials considered, Si is
more promising than Au. Although the attenuation constant
reaches higher values for Si than for Au, thus reducing
the overall propagation distance, the sudden increase in the
attenuation constant with increase in coating thickness is
much steeper for Si than for Au. Combined with the fact
that it is relatively easy to grow a thin SiOfilm on Si,
this creates a favorable situation for practical implementa-
tions.

A common way to present the attenuation constant is to
determine the number of wavelengths a wave propagates in
the waveguide before its field intensity is reduced to 1of its
original value. The authors then define sensitivity as the change
in that propagated number of wavelengths per-unit change in
SiO layer thickness. The attenuation constant was calculated
for fluid refractive indices in the range between 1.3 to 1.4,
covering most physiological fluids [9], [15]. For each index,
maximum sensitivity was determined and plotted in Fig. 8 for
odd TE modes, for a structure with Si as metal and m.

Fig. 8 shows that for the odd TE mode the maximum
sensitivity for a fluid refractive index of 1.3 is 55 /nm.
For a given coating thickness, a 1m wave will propagate a
certain number of wavelengths in the structure. An increase in
thickness of the SiOlayer of 1 nm will reduce that number
by 55 wavelengths (or 55m). Note that this is maximum
sensitivity, which occurs when the initial coating thickness is
chosen where the attenuation curve (Fig. 5) has its steepest
slope, i.e., about 0.45m.
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Fig. 8. Maximum sensitivity (i.e., change in number of wavelengths a wave
is propagated before its intensity is reduced to 1=e of its original value,
per-unit change in coating thickness) in a five-layer waveguide with Si as
the metal, and SiO2 as the coating, plotted as a function of fluid refractive
index, for the lowest order even TE mode, and a metal spacing ofb = 5�m.

For a range of the refractive index between 1.3–1.4, the
maximum sensitivity varies from 55 to 20/nm. This should
be in all cases experimentally detectable.

B. Application

The steep increase in attenuation constant and its high
sensitivity with respect to an increase in coating layer thick-
ness has potential value for biosensor applications. One such
application is an optical immunosensor [16].

Indeed, a micromachined Si waveguide can be coated with
a SiO layer, up to a thickness of about 0.45m, where
maximum sensitivity occurs as indicated in Fig. 5. A layer of
(capture) antibodies is then bound to that surface. A TE mode
will propagate over a certain distance in the coated waveguide.
Whenever a physiological test fluid containing the specific
antigens is flowing through the fluid region of the structure,
these antigens will bind to their respective antibodies, hereby
increasing the thickness of the coating layer by a few tens
of nm. As a result, it immediately decreases the propagation
distance for a 1-m wave by at least 100m (see Fig. 8), since
the operation region is chosen to have maximum sensitivity.
Measuring such a change in propagation distance can be
realized with state-of-the-art integrated optics.

Several problems can be expected in the practical devel-
opment of this type of immunosensor: the binding procedure
for the immunocomponents, the flow of physiological fluid
through microchannels, the minimum detectable amount of
antigens, and the appropriate calibration procedure. These
practical problems, however, have been solved before for other
applications (see, e.g., [17]–[19]).

V. CONCLUSION

In this paper, the influence of an SiOlayer coating a
planar waveguide structure filled with a fluid is analyzed both

analytically and numerically. The characteristic equations for
the even and odd TE and TM modes are derived. Roots
of these equations are calculated numerically and yield the
respective attenuation and phase constants. From these results
it becomes clear that the lowest order TE modes are propagated
in the fluid for very thin SiO coatings. As the SiOcoating
thickness exceeds its cutoff value the mode is propagated in
the coating and no longer in the fluid. A possible application
of this transition in the propagation pathway is its use as a
detection principle for an optical immunosensor. The lowest
order TM modes do not show this behavior for the materials
considered.

ACKNOWLEDGMENT

The authors wish to thank Dr. T. Mosmann, Dr. L. Phlak,
and Dr. L. Guilbert, all at the Department of Immunology, Uni-
versity of Alberta, Edmonton, AB, Canada, for many practical
discussions on the development of an optical immunosensor.
The stimulating and inspiring thoughts of their colleague, Dr.
T. Wegmann, who unfortunately passed away while this work
was going on, are especially remembered and acknowledged.

REFERENCES

[1] F. E. Vermeulen, C. R. James, and A. M. Robinson, “Hollow microstruc-
tural waveguides for propagation of infrared radiation,”J. Lightwave
Tech.,vol. 9, no. 9, pp. 1053–1060, Sept. 1991.

[2] F. E. Vermeulen, T. Wang, C. R. James, and A. M. Robinson, “On the
propagation of infrared radiation in hollow microstructural cylindrical
waveguides,”J. Lightwave Tech.,vol. 11, no. 12, pp. 1956–1964, Dec.
1993.

[3] F. E. Vermeulen, A. M. Robinson, C. R. James, and J. N. McMullin,
“Infrared surface waves in circular hollow waveguides with small
core diameters,”IEEE Trans. Microwave Theory Tech.,vol. 42, pp.
1932–1938, Oct. 1994.

[4] Y. Kato and M. Miyagi, “Modes and attenuation constants in circular
hollow waveguides with small core diameters for the infrared,”IEEE
Trans. Microwave Theory Tech.,vol. 40, pp. 679–685, Apr. 1992.

[5] , “Numerical analysis of mode structures and attenuations in
dielectric-coated circular hollow waveguides for the infrared,”IEEE
Trans. Microwave Theory Tech.,vol. 42, pp. 2336–2342, Dec. 1994.

[6] P. Yeh,Optical Waves in Layered Media.New York: Wiley, 1988, ch.
11, pp. 298–374.

[7] M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of
lossy mode cut-off conditions in planar waveguides with semiconductor
guiding layer,”Proc. Inst. Elect. Eng., vol. 140, pp. 247–252, Aug. 1993.

[8] E. D. Palik, Ed.,Handbook of Optical Constants of Solids.Orlando,
FL: Academic, 1985.

[9] , Handbook of Optical Constants of Solids II.Boston, MA:
Academic, 1991.

[10] M. Miyagi and S. Nishida, “A proposal of low-loss leaky waveguide
for submillimeter waves transmission,”IEEE Trans. Microwave Theory
Tech.,vol. MTT–28, pp. 398–403, Apr. 1980.

[11] T. E. Batchman and G. M. McWright, “Mode coupling between dielec-
tric and semiconductor planar waveguides,”IEEE J. Quantum Electron,
vol. QE-18, pp. 782–788, Apr. 1982.

[12] G. M. McWright, T. E. Batchman, and M. S. Stanziano, “Measurement
and analysis of periodic coupling in silicon-clad planar waveguides,”
IEEE Trans. Microwave Theory Tech.,vol. MTT-30, pp. 1753–1759,
Oct. 1982.

[13] S. D. Conte,Elementary Numerical Analysis, An Algorithmic Approach,
Information Processing and Computers. New York: McGraw-Hill,
1965.

[14] The Mathworks, Inc.,MATLAB 4.2 for UNIX Computers, User’s Guide,
Natick, MA: MATLAB, 1994.

[15] R. Weast and M. Astle, Eds.,CRC Handbook of Chemistry and Physics.
Boca Raton, FL: CRC Press, 1981.

[16] W. Van Petegem, C. R. James, F. E. Vermeulen, and A. M. Robin-
son, “Numerical analysis of near-infrared wave propagation properties
in a coated parallel planar waveguide structure for micromachined



VAN PETEGEM et al.: NUMERICAL ANALYSIS OF NEAR-INFRARED WAVE PROPAGATION CHARACTERISTICS 375

immunosensor applications,” presented at the 17th Ann. IEEE/EMBS
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